

Overview

- Structure of a parallel computer
- Parallel Software for 16 cores (CPU)
- Parallel Software for 1,600 cores (GPU)

Programming Parallel Systems: Basic Idea

- Our model for parallel programming:
- A job is split into many small tasks
 - These tasks can be executed in parallel
- The tasks can be distributed
 - Each "worker thread" may get many tasks
- The partial results may be merged
 - This is just another kind of "task"

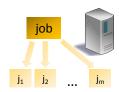
job j₁ j₂ ... j_m r₁ r₂ ... r_m

Programming Parallel Systems

- So far, we talked (mainly) about storage systems
 - Main question: How can we guarantee a consistent system state



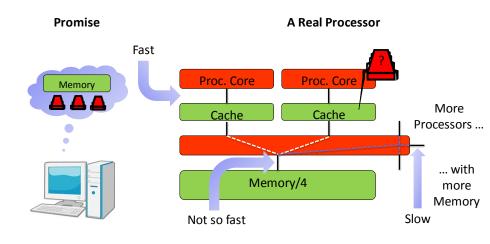
- Already desktop systems can be used for parallel computation
 - Distribute work load in the system!
 - How can we do this?
 - What's underneath the hood?



Programming Parallel Systems: Promise and Reality

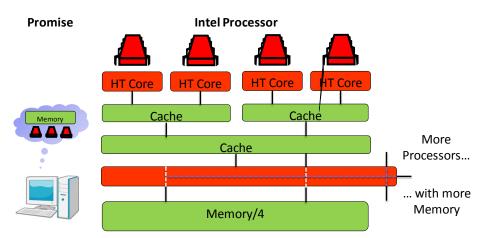
Memory Memory/4 Processor 4 Processor 2 Memory/4 Memory/4 Not so fast

Programming Parallel Systems: Promise and Reality



8/5

Programming Parallel Systems: Promise and Reality



- Need to know your hardware for maximum efficiency
 - Cache Sizes, Topology & Bandwidth of Buses
 - Think: Data locality, (hidden!) communication cost

Programming Parallel Systems: A To-Do List

- We need to
 - write code for worker threads
 - distribute the threads to the cores
 - split the job into smaller tasks (how small?)
 - assign tasks to threads
 - balance the load on all threads
 - **collect** the (partial) results from the machines
 - assembly the results
- Should be fast as well, i.e., make use of **locality**
 - cache locality and prefer local memory over remote memory!
- The **complexity** of the program increases significantly!!!
- Solution?

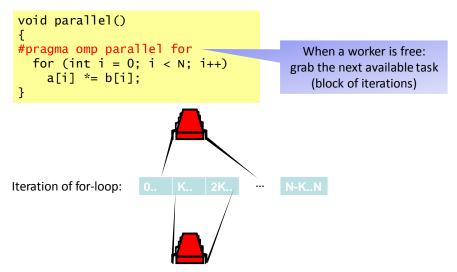
77 8/8

OpenMP

- OpenMP is a specification developed by AMD, Cray, IBM, Intel, NVIDIA, ...
 - Parallelization
 - Load balancing
 - Implicit use of locality
 - If you know what you are doing
 - All in one library!

- Not really a library, but a language-extension
 - C, C++, Fortran (still used in scientific computing)
- Supports Basic Parallel Constructs
 - Loops, basic reductions, tasks, ...
 - Synchronization

OpenMP: Under the Hood



Where are the memory cells accessed in iteration i?

```
OpenMP: An Example
```

```
std::vector<int> a(N);
std::vector<int> b(N);

void sequential()
{
  for (int i = 0; i < N; i++)
    a[i] *= b[i];
}</pre>
```

- Split loop into tasks
- Distribute tasks to workers

```
void parallel()
{
#pragma omp parallel for
  for (int i = 0; i < N; i++)
    a[i] *= b[i];
}</pre>
```

a[i]*b[i]?

4 Procs x 4 Cores = 16 Threads Speedup: 3.1x

Only 3.1x?

OpenMP: Digging Deeper

8/9

8/11

 Physical memory location depends on **Operating System**

```
std::vector<int> a(N);
std::vector<int> b(N);
```

8/10

- Virtual Memory presented as continuous block
 - Physical Memory may be scattered
 - A single page of virtual/physical memory cannot be scattered
 - Typical page sizes: 4KB, SuperPage: 4MB
- Many OSes
 - Explicitly: Offer system call to pin a page to a physical processor by hand
 - Implicitly: Pin virtual pages to processor that first accesses it
 - How is this done?

```
OpenMP: Static Scheduling
                                    int *a, *b;
a = (int*)malloc(N*sizeof(int));
b = (int*)malloc(N*sizeof(int));
void fill()
#pragma omp parallel for schedule(static)
 for (int i = 0; i < N; ++i) {
    a[i] = a_value(i);
    b[i] = b_value(i);
                      Chunk x is assigned to thread x mod num threads
void parallel()
#pragma omp parallel for schedule(static)
 for (int i = 0; i < N; ++i)
    a[i] *= b[i]:
                                4 Procs x 4 Cores = 16 Threads
                                      Speedup: 6.7x
                                        Only 6.7x?
```

Not Every Parallel Program is a for-loop

Barely scratched the surface of OpenMP

- Reductions

```
int sum = 0;
#pragma omp parallel for reduction(+:sum)
  for (int i = 0; i < N; i++) {
    sum += a[i] + b[i];
}</pre>
```

8/13

Not Every Parallel Program is a for-loop

Barely scratched the surface of OpenMP

Reductions

```
    Arbitrary task types
```

A race car car race

(or)
A car car race race
(or...)

Not Every Parallel Program is a for-loop

Barely scratched the surface of OpenMP

- Reductions

Arbitrary task types

Synchronization primitives

A car race is fun to watch (or) A race car is fun to watch 0, 1

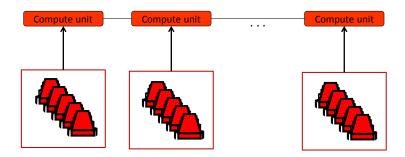
8/16

Not Every Parallel Program is a for-loop

- Barely scratched the surface of OpenMP
 - Reductions
 - Arbitrary task types
 - Synchronization primitives
- Already a simple loop can be tricky
- Simple loops are everywhere!
 - Think: Vectors, Matrix Multiplication
 - Simple loops deserve their own hardware

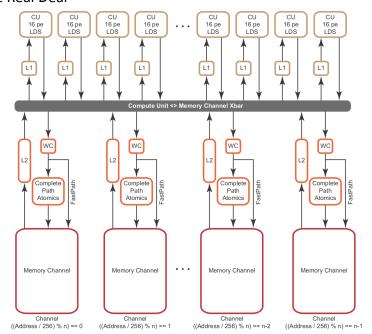
Graphic Processing Unit (GPU)

- The complexity of the architecture increases further
- The GPU consists of compute units, each with multiple stream cores
 - As an example, AMD Radeon R9 290X has 2816 stream cores



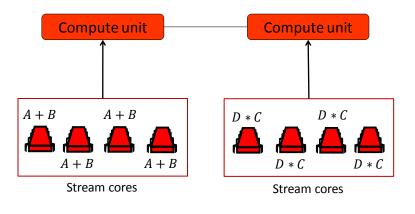
8/17

The Real Deal



Graphic Processing Unit (GPU)

- Different compute units can do different things
- All stream cores execute the same instruction sequence
 - With separate local memories



• What is this good for?

8/20

8/18

Programming Guide AMD Accelerated Parallel Processing OpenCL TM

Matrix Operations

- Matrix operations are the core of graphics computations
- For example, matrix multiplication can be highly parallelized

• Naive: $O(n^3)$ multiplications

8/21

Matrix Multiplication

• Naive: $O(n^3)$ multiplications

Small rounding errors

• Better: Strassen $O(n^{2.807})$ multiplications

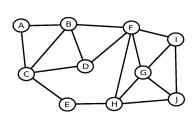
- Re-use partial results
- Can also be done in parallel
- Even better? Coppersmith-Winograd $O(n^{2.375477})$ multiplications
 - Asymptotically better
 - But not for practical matrix sizes

8/22

8/24

All-Pairs Shortest Path

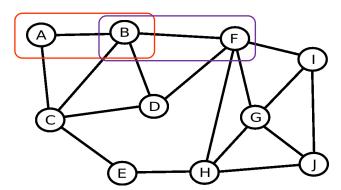
- Some problems can be represented nicely by matrices
- Let G = (V, E) be a connected graph. The adjacency matrix M of G has a 1-entry on M(u, v) if there is an edge between nodes u and v



	A	В	\mathbf{C}	D	\mathbf{E}	F	G	Н	I	J
A	0	1	1	0	0	0	0	0	0	0
В	1	0	1	1	0	1	0	0	0	0
$^{\rm C}$	1	1	0	1	1	0	0	0	0	0
D	0	1	1	0	0	1	0	0	0	0
\mathbf{E}	0	0	1	0	0	0	0	1	0	0
F	0	1	0	1	0	0	1	1	1	0
G	0	0	0	0	0	1	0	1	1	1
\mathbf{H}	0	0	0	0	1	1	1	0	0	1
Ι	0	0	0	0	0	1	1	0	0	1
J	0	0	0	0	0	0	1	1	1	0

All-Pairs Shortest Path

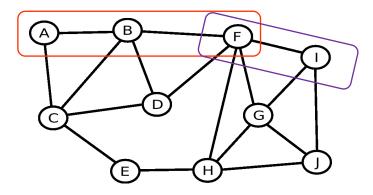
- The adjacency matrix gives us all nodes at distance 1
- To get nodes at distance 2, multiply the adjacency matrix by itself
- $M^2(A,F) = M(A,A)M(A,F) + M(A,B)M(B,F) + ... + M(A,F)M(F,F)$ ≥ 1



Solving the All-Pairs Shortest Path Problem

• Similarly, get nodes at distance 3 by multiplying M^2 by M:

$$M^{3}(A, I) = M^{2}(A, A)M(A, I) + M^{2}(A, F)M(F, I) + ... \ge 1$$



Conclusion

- OpenMP
 - Widely used in scientific computing
 - CPUs execute 'real' threads
 - Don't have to execute the same line of code everywhere
- GPUs have way more cores than CPUs
 - Enables more parallelism
 - Cores execute the **same** instruction per clock cycle
 - Efficient for matrix operations
 - Can be programmed using
 - OpenCL
 - CUDA
 - possibly OpenMP in the future

All-Pairs Shortest Path

- After i multiplications, $M(u, v) \neq 0$ if there is a path of length at most i + 1 from u to v
- After diameter(G) 1 multiplications, we have found all nodes
- The length of the shortest path between any two nodes u and v is the index of the step i for which, $M^{(i-1)}(u,v) = 0$ and $M^i(u,v) \ge 1$
 - Write distances to output matrix Q
- We can store the partial paths found in the intermediate steps
 - get the actual shortest paths in the end

8/25

8/27

Faults

Outlook

- OpenMP, OpenCL, CUDA don't care about faults
- Hadoop/MapReduce: Store all intermediate steps, for fault-tolerance

8/26

- Apache Spark: Recompute intermediate steps in case of (rare) faults

Bottlenecks

- Solution to problem designed around the shortcomings of the hardware
- Why don't we design the hardware around our problem?
 Remove bottlenecks, fine-tune relative speed of system components
- «MinuteSort with Flat Datacenter Storage», MSR
 Disk reads can be a bottleneck as well → Design whole datacenter around it
 Overlap disk reads with asynchronous sorting-passes of already available data
 Unbeaten entry from 2012 for 'Number of elements sorted in 60 seconds'
 www.sortbenchmark.org

